

RHIC Results on J/w

Mike Leitch - LANL - leitch@bnl.gov QM06 - Shanghai - 18 November 2006

- Production
 - cross section & polarization
 - feed-down
- Cold nuclear matter (CNM)
 - shadowing or gluon saturation
 - absorption & gluon energy loss
 - p_T broadening
 - lack of x2 scaling
- Hot-dense matter in A+A collisions
 - final PHENIX AuAu results
 - cold nuclear matter effects in A+A
 - regeneration & sequential suppression
- Upsilons
- Summary

(see talks by A. Bickley, A. Glenn, T. Gunji on Saturday afternoon – 2.1)

J/ψ production, parton level structure & dynamics

Production of heavy vector mesons, J/ψ , ψ' and Υ

Gluon fusion dominates (NLO calculations add more complicated diagrams, but still mostly with gluons)

• color singlet or octet $c\bar{c}$: absolute cross section and polarization? Difficult to get both correct!

$\chi_{,1,2} \rightarrow J/\psi$	~30%		
$\psi' \rightarrow J/\psi$	5.5%		

Configuration of $c\bar{c}$ (important for pA cold nuclear matter effects)

Complications due to substantial feed-down from higher mass resonances, from ψ' , χ_c

feed-down poorly known

J/ψ Production - Polarization

- Octet models get correct cross section size (unlike singlet), but...
- · CDF and Fermilab E866 J/ ψ data show zero or longitudinal polarization & disagree with NRQCD predictions of large transverse polarization at large p_T

$$d\sigma/d\cos\theta = A(1 + \lambda\cos^2\theta)$$

 $\lambda = +1$ (transverse) = -1 (longitudinal)

Is feed-down washing out polarization? (~40% of J/ψ from feed-down) (good ψ' polarization measurement would be helpful here)

PHENIX - p+p J/ψ - new run5 data

- · Slightly favors flatter shape at mid-rapidity than most models
- Forward rapidity falloff steeper than 3-gluon pQCD model black curve [Khoze et al. , Eur. Phys. J. C39, 163-171 (2005)]
- BR• σ_{tot} = 178 ± 3 ± 53 ± 18 nb
- Harder p_T than lower energy & softer at forward rapidity

Mike Leitch

Cold Nuclear Matter (CNM) Effects Gluon Shadowing and Saturation

Leading twist gluon shadowing

• e.g. "FGS", Eur. Phys. J A5, 293 (1999)

Phenomenological fit to DIS & Drell-Yan data

· e.g. "EK5", Nucl. Phys. A696, 729 (2001).

Coherence approach and many others

Amount of gluon shadowing differs by up to a factor of three between diff models!

Saturation or Color Glass Condensate (CGC) - see F. Gelis talk

- At low-x there are so many gluons that $2\rightarrow 1$ diagrams become important and deplete low-x region
- Nuclear amplification: $x_AG(x_A) = A^{1/3}x_pG(x_p)$, i.e. gluon density is ~6x higher in Gold than the nucleon

Cold Nuclear Matter Effects Absorption & Energy Loss

 J/ψ suppression is a puzzle with possible contributions from shadowing & from:

Absorption (or dissociation) of $C\overline{C}$ into two D mesons by nucleus or co-movers (the latter most important in AA collisions where co-movers more copious)

Energy loss of incident gluon shifts effective x_F and produces nuclear suppression which increases with x_F R=1

800 GeV p-A (FNAL)

Cold Nuclear Matter Transverse Momentum Broadening

$$\sigma_{A} = \sigma_{N} A^{\alpha}$$

Initial-state gluon multiple scattering causes \mathbf{p}_{T} broadening (or Cronin effect)

PHENIX J/ ψ Nuclear Dependence 200 GeV dAu collisions - PRL <u>96</u>, 012304 (2006)

Data favors weak shadowing & absorption

- With limited statistics difficult to disentangle nuclear effects
- Need another dAu run!

Not universal vs x_2 as expected for shadowing, but does scale with x_F , why?

- · initial-state gluon energy loss?
- Sudakov suppression (energy conservation)?

AuAu J/ ψ 's - Quark Gluon Plasma (QGP) signature?

Debye screening predicted to destroy J/ψ 's in a QGP with different states "melting" at different temperatures due to different binding energies.

regeneration models give enhancement that compensates for screening?

on the other hand, recent 0.25 lattice calculations suggest J/\psi not screened after all.

Suppression only via feed-down from screened χ_c & ψ'

11/21/2006

Mike Leitch

PHENIX Run4 AuAu final results (nucl-ex/0611020) 1st high statistics J/ψ measurements at RHIC

- most central collisions suppressed to ~0.2
- · forward suppressed more than mid-rapidity
 - saturation of forward/mid suppression ratio rapidity @ ~0.6 for $N_{part} \ge 100$?
 - · trend opposite to that of CNM (solid lines) and comover (dashed) models

J/ψ suppression in AA collisions & CNM baseline

(CNM = Cold Nuclear Matter)

· present dAu data probably only constrains absorption to: $\sigma_{ABS} \sim 0\text{--}3~mb$

See also talks by R. Vogt & R. Granier de Cassagnac Saturday (2.1) & Sunday(3.1) afternoons

· AuAu suppression is stronger than CNM calculations predict especially for most central mid-rapidity & at forward rapidity

• Los Alamos

Models without regeneration

Models that reproduce NA50 results at lower energies (above):

- Satz color screening in QGP (percolation model) with CNM added (EKS shadowing + 1 mb)
- Capella comovers with normal absorption and shadowing
- Rapp direct production with CNM effects (without regeneration)

But predict too much suppression for RHIC mid-rapidity (at right)!

Regeneration

At RHIC with 10x collision energy & 2-3x gluon energy density relative to SPS \rightarrow stronger QGP suppression at RHIC expected

- in regeneration models single charm quarks combine in the later stages to form J/ψ 's
- can compensate for strong QGP suppression to come near y=0
 RHIC data
- regeneration would be much larger at the LHC!
- but this regeneration goes as the (single) charm density which is poorly known at RHIC (another story, see A. Suaide's talk)

Sequential Screening

(Karsch, Kharzeev, Satz, hep-ph/0512239)

Sequential screening only of the higher-mass resonances that feed-down to the J/ψ ; with the J/ψ itself still not dissolved?

- supported by recent Lattice calculations that give $T_{J/\psi}$ > 2 $T_{\mathcal{C}}$
- gives similar suppression at RHIC& SPS (for mid-rapidity)

But carefull! Hard to know how to set relative energy density for RHIC vs SPS

$$\epsilon_{Bj} = \frac{dE_T}{dy} \frac{1}{\tau_0 \pi R^2}$$

- $\cdot \tau_0 > 1 \text{ fm/c @ SPS?}$
 - 1.6 fm/c crossing time
- τ_0 smaller @ RHIC?

Quarkonium dissociation temperatures - Digal, Karsch, Satz

state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

- Suppression stronger than possible from ψ' , $\chi_{\mathcal{C}}$ alone?
- Gluon saturation can lower forward relative to mid-rapidity?

Sequential Screening Scenario

- QGP suppression of $\chi_{\mathcal{C}}$, ψ'
- + additional forward suppression from gluon saturation (CGC)
- but approx. flat forward/mid above $N_{part} \sim 100$ seems inconsistent forward should drop more for more central collisions as gluon saturation increases

11/21/2006 Mike Leitch Centrality — 15

Regeneration Scenario

- both forward & mid rapidity suppressed by QGP - i.e. screening or large gluon density
- mid-rapidity suppression reduced by strong regeneration effect
- but approx. flat forward/mid suppression for N_{part} >100 seems inconsistent with increasing regeneration & increasing QGP suppression for more central collisions

Need comprehensive theoretical work that puts sequential screening, regeneration, gluon saturation, forward suppression of open charm, etc. ALL TOGETHER – and considers experimental uncertainties carefully

11/21/2006 Mike Leitch centrality ----

Regeneration should cause narrowing of p_T - does it?

 $\langle p_T^2 \rangle$ pretty flat for both mid and forward-y

- as expected in regeneration picture of Thews
- Yan picture almost flat to start with, gives slight fall-off with centrality

Caution - $\langle p_T^2 \rangle$ from fits often unreliable for AA (stable when restricted to $p_T \langle 5 \text{ GeV/c here} \rangle$) Better for theoretical comparisons to look at $R_{\Delta}(p_T)$?

Regeneration should give J/ψ Flow

Open charm has recently been seen to flow (at least at some p_T values)

Need to look for J/ψ flow - if regeneration dominates, the J/ψ 's should inherit flow from charm quarks

Upsilons at RHIC

PHENIX QM05 - 1st Upsilons at RHIC from ~3pb⁻¹ collected in the 2005 run.

Signal	RHIC Exp.	RHIC I	RHIC II	LHC
	(Au+Au)	(>2008)		ALICE+
$J/\psi \rightarrow e^+e^-$	PHENIX	3,300	45,000	9,500
$J/\psi \rightarrow \mu^+\mu^-$		29,000	395,000	740,000
$\Upsilon \rightarrow e^+e^-$	STAR (830	11,200	2,600
$\Upsilon \rightarrow \mu^+ \mu^-$	PHENIX	80	1,040	8,400

11/21/2006

Mike Leitch

19

Summary – J/ψ Suppression A puzzle of two (or more) ingredients

BACKUP

CNM effects, constrained by dAu data, give fairly flat rapidity dependence in AuAu

AuAu - PHENIX 200 GeV J/ψ - MRST, EKS98

R_{AA} or R_{AA}/CNM vs Number of Participants

J/ψ suppression vs. light hadrons

Many More Models for RHIC J/ψ suppression in AuAu Collisions

All have suppression + various regeneration mechanisms

Rapp - PRL <u>92</u>, 212301 (2004)

· screening & in-medium production

Thews - see previous slide

Andronic - PL <u>B57</u>, 136 (2003)

- · statistical hadronization model
- · screening of primary J/ψ 's
- · + statistical recombination of thermalized c-cbar's

Kostyuk - PRC <u>68</u>, 041902 (2003)

- · statistical coalescence
- · + comovers or QGP screening

Bratkovskaya – PRC <u>69</u>, 054903 (2004)

· <u>hadron-string dynamics</u> transport

Zhu - PL <u>B607</u>, 107 (2005)

- · J/ψ transport in QGP
- · co-movers, gluon breakup, hydro for QGP evolution
- · no cold nuclear matter, no regeneration

Detector Upgrades for Heavy Quarks

PHENIX

- Silicon vertex detector
 - mid-rapidity & forward heavy-q's, incl. B \rightarrow J/ ψ X
 - improved background & mass resolution for quarkonia & dimuons
- Nose cone calorimeter $\chi_c \to J/\psi \gamma$

RHIC-II

- Luminosity increases via electron cooling also important:
 - x10 (AuAu); x2-3 (pp)

STAR

- Silicon vertex detectors
- Heavy Flavor Tracker & integrated central tracker

Forward

· D \rightarrow K π

RHIC-II - Quarkonia

- With detector upgrades (PHENIX and STAR):
 - J/ψ from B decays with displaced vertex measurement (both).
 - Reduce $J/\psi \rightarrow \mu\mu$ background with forward vertex detector in PHENIX.
 - Improve mass resolution for charmonium and resolve Υ family.
 - See χ_c by measuring γ in forward calorimeter in front of muon arms (PHENIX)
- And with the luminosity upgrade:
 - Measure B \rightarrow J/ ψ using displaced vertex independent B yield measurement, also get background to prompt J/ ψ measurement.
 - $J/\psi R_{AA}$ to high p_T . Does J/ψ suppression go away at high p_T ?
 - $J/\psi v_2$ measurements versus p_T . See evidence of charm recombination?
 - ΥR_{AA} . Which Upsilons are suppressed at RHIC?
 - Measure $\psi' R_{AA}$. Ratio to J/ψ ?
 - Measure $\chi_c \to J/\psi + \gamma R_{AA}$. Ratio to J/ψ ?

Onia Yields at RHIC II

	CuCu (200				
Signal/System	pp (200 GeV)	pp (500 GeV)	GeV)	AuAu (200 GeV)	dAu (200 GeV)
J/Ψ→ee	55,054	609,128	73,921	44,614	29,919
Ψ'(2S)→ee	993	10,985	1,333	805	540
χ_c0→γ+J/Ψ→ee	100	2,578	134	81	54
χ_c1→γ+J/Ψ→ee	1,340	40,870	1,800	1,086	728
χ_c2→γ+J/Ψ→ee	2,190	59,296	2,941	1,775	1,190
Υ(0,1,2) → ee	210	3,032	547	397	184
В→Ј/Ѱ→ее	1,237	41,480	4,567	3,572	1,085
Ј/Ұ→μμ	468,741	5,483,006	653,715	394,535	258,136
Ψ'(2S)→μμ	8,453	98,880	11,789	7,115	4,655
χ_с0→γ+Ј/Ψ→μμ	3,822	99,824	5,330	3,217	2,105
χ_c1→γ+J/Ψ→μμ	51,215	1,582,561	71,425	43,107	28,204
χ_с2→γ+Ј/Ψ→μμ	83,702	2,296,069	116,732	70,451	46,095
Υ(0,1,2)→μμ	528	7,723	1,429	1,035	469
В→Ј/Ѱ→μμ	2079	76466	5756	3752	1824

- Precision measurements of the J/Ψ
- Exploratory measurements of the other onium states.
- Steep increase at \sqrt{s} = 500 GeV illustrates the significant difficulties for measurements at lower energies.